Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(26): e2300889, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37337388

RESUMEN

The coronavirus pandemic has accelerated the development of next-generation vaccination technology to combat future pandemic outbreaks. Mucosal vaccination effectively protects the mucosal surfaces, the primary sites of viral entry, by inducing the secretion of immunoglobulin A (IgA) and humoral IgG. Here, a dissolving microneedle (DMN) is adopted as a mucosal vaccine delivery platform to directly penetrate the sublingual site, which is rich in antigen-presenting cells (APCs) and lymphoid tissues. The sublingual dissolving microneedle (SLDMN) vaccination platform comprised a micropillar-based compartment and a 3D-printed SLDMN applicator as a substitute for the DMN patch. The penetration efficacy of SLDMNs is assessed using in vitro optical coherence tomography (OCT) and in vivo histological analysis. The efficacy of SLDMN is also evaluated in a vaccine form using the recombinant spike (S1) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furthermore, SLDMN is used to challenge transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) receptors. Its effects are evaluated on antibody production, survival rate, and inflammation attenuation after infection compared to the intramuscular (IM) injections. Overall, SLDMN effectively induced mucosal immunity via IgA secretion, attenuated lung inflammation, and lowered the levels of cytokines and chemokines, which may prevent the "cytokine storm" after SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Vacunas Virales , Ratones , Animales , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Inmunidad Mucosa , COVID-19/prevención & control , Inmunoglobulina A/análisis
2.
Acta Biomater ; 160: 112-122, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764594

RESUMEN

Dissolving microneedles (DMNs), despite their minimally invasive drug administration, face challenges in skin insertion and drug-loading capacity, which lead to less effective drug delivery. The micro-pillar tunnel stamp (MPTS) was designed to enhance the transdermal delivery efficacy of externally provided topical formulations via the creation of microchannels. The tunnel and canal of the MPTS enable the simultaneous application of DMNs and topical drugs. The application of micro-pillar-polycaprolactone (MP-PCL), which is a DMN made of a slowly dissolving polymer, exhibited a drug permeation rate 1.3-fold and 2.6-fold higher than that of micro-pillar-hyaluronic acid (MP-HA), a DMN made of a rapidly dissolving polymer, and the topical group, respectively. The base diameter of MP-PCL was set to 700 µm for maximized delivery efficacy, achieving 2.8-fold higher L-ascorbic acid accumulation than that of the topical group. In vivo analysis showed that, compared to topical administration, MPTS-delivered lidocaine had 5-fold greater permeation and the MPTS-delivered group showed 1.25-fold higher skin residual amount, confirming enhanced delivery. Thus, the optimized MPTS system can be presented as an attractive alternative to overcome the limitations of the existing MN systems such as incomplete insertion and limited drug-loading capacity, enhancing the delivery of topical formulations in the transdermal market. STATEMENT OF SIGNIFICANCE: We developed a micro-pillar tunnel stamp (MPTS) to enhance the delivery of externally provided topical formulations. The functional tunnel and canal of the MPTS enabled the simultaneous application of a dissolving microneedle (DMN) array insertion and administration of external topical drugs. Upon insertion, the DMNs created skin microchannels that allowed the externally administered drug to diffuse. DMNs were fabricated using polycaprolactone (PCL), a slowly dissolving polymer, to maintain their structure inside the skin and prolong the opening duration of the microchannels. This system achieved significantly improved delivery of topically administered external drugs via integration with slowly dissolving DMNs, while offering the possibility of its development as a universal delivery system for various topical pharmaceuticals.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Composición de Medicamentos , Administración Cutánea , Polímeros/química , Agujas
3.
Biomater Adv ; 145: 213248, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610239

RESUMEN

Dissolving microneedles (DMNs) are used for minimally invasive transdermal drug delivery. Dissolution of drugs is achieved in the body after skin penetration by DMNs. Unlike injections, the insertion depth of the DMN is an important issue because the amount of dissolved DMN in the skin determines the amount of drug delivered. Therefore, the inaccurate drug delivery due to the incomplete insertion is one of the limitations of the DMN. Thus, many insertion and penetration tests have been essentially conducted in DMN studies, yet only incomplete insertion is known and the exact standard for how much it is not inserted is still unknown. Moreover, there are various shapes have been introduced in the microneedle field, there have been only few studies that have compared and evaluated the insertion depth of the shapes. Here, we present an intensive approach for DMN insertion based on DMN shape among various insertion deciding factors. We numerically analyzed the volumetric distribution of three types of DMN shapes: conical-shaped DMN, funnel-shaped DMN, and candlelit-shaped DMN, and introduced a new insertion evaluation criterion while covering previous insertion evaluations. Using optical coherence tomography, the images of DMNs embedded in the skin were analyzed in rea l-time, and the amount of drug delivered was analyzed at sectioned depth with a cryotome. The in vitro data confirmed that the insertion depth differed based on shape, and the resulting drug delivery depended on the volume assigned to the insertion depth. Insulin-loaded DMNs were applied to C57BL/6 mice, and the results of pharmacokinetic and pharmacodynamic analyses supported the results of the in vitro analysis. Our approach, which considers the correlation between DMN shape and insertion depth, will contribute to establishing criteria for various DMN design and maximizing drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Ratones , Animales , Ratones Endogámicos C57BL , Piel/metabolismo , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos
4.
Pharmaceutics ; 14(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36559297

RESUMEN

Topical liquid formulations, dissolving microneedles (DMNs), and microscale needles composed of biodegradable materials have been widely used for the transdermal delivery of active compounds for skincare. However, transdermal active compound delivery by topical liquid formulation application is inhibited by skin barriers, and the skincare efficacy of DMNs is restricted by the low encapsulation capacity and incomplete insertion. In this study, topical serum application via a dissolvable micro-channeling system (DMCS) was used to enhance serum delivery through micro-channels embedded with DMNs. Transdermal serum delivery was evaluated after the topical-serum-only application and combinatorial serum application by assessing the intensity of allophycocyanin (APC) loaded with the serum in the porcine skin. APC intensity was significantly higher in the skin layer at a depth of 120-270 µm upon combinatorial serum application as compared to topical-serum-only application. In addition, the combinatorial serum application showed significantly improved efficacy in the clinical assessment of skin hydration, depigmentation, improvement of wrinkles, elasticity, dermal density, skin pores, and skin soothing without any safety issues compared to the serum-only application. The results indicate that combinatorial serum application with DMCS is a promising candidate for improving skincare treatments with optimal transdermal delivery of active compounds.

5.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36235975

RESUMEN

Teriparatide acetate (TA), which directly promotes bone formation, is subcutaneously injected to treat osteoporosis. In this study, TA with a once-weekly administration regimen was loaded on dissolving microneedles (DMNs) to effectively deliver it to the systemic circulation via the transdermal route. TA activity reduction during the drying process of various TA polymer solutions formulated with hyaluronic acid and trehalose was monitored and homogeneities were assessed. TA-DMN patches fabricated using centrifugal lithography in a two-layered structure with dried pure hyaluronic acid on the base layer and dried TA polymer solution on the top layer were evaluated for their physical properties. Rhodamine-B-loaded TA-DMNs were found to form perforations when inserted into porcine skin using a shooting device. In addition, 87.6% of TA was delivered to the porcine skin after a 5-min TA-DMN patch application. The relative bioavailability of TA via subcutaneous injection was 66.9% in rats treated with TA-DMN patches. The maximal TA concentration in rat plasma was proportional to the number of patches used. Therefore, the TA-DMN patch fabricated in this study may aid in the effective delivery of TA in a patient-friendly manner and enhance medical efficacy in osteoporosis treatment.

6.
Biomater Res ; 26(1): 53, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199121

RESUMEN

BACKGROUND: Dissolving microneedle (DMN) is a transdermal drug delivery system that creates pore in the skin and directly deliver drug through the pore channel. DMN is considered as one of the promising system alternatives to injection because it is minimally invasive and free from needle-related issues. However, traditional DMN patch system has limitations of incomplete insertion and need of complex external devices. Here, we designed film-trigger applicator (FTA) system that successfully delivered DMN inside the skin layers using fracture energy of carboxymethyl cellulose (CMC) film via micropillars. We highlighted advantages of FTA system in DMN delivery compared with DMN patch, including that the film itself can act as DMN applicator. METHODS: FTA system consists of DMNs fabricated on the CMC film, DMN array holder having holes aligned to DMN array, and micropillars prepared using general purpose polystyrene. We analyzed punching force on the film by micropillars until the film puncture point at different CMC film concentrations and micropillar diameters. We also compared drug delivery efficiency using rhodamine B fluorescence diffusion and skin penetration using optical coherence tomography (OCT) of FTA with those of conventional DMN patch. In vivo experiments were conducted to evaluate DMN delivery efficiency using C57BL/6 mice and insulin as a model drug. RESULTS: FTA system showed enhanced delivery efficiency compared with that of the existing DMN patch system. We concluded CMC film as a successful DMN applicator as it showed enhanced DMN penetration in OCT and rhodamine B diffusion studies. Further, we applied FTA on shaved mouse dorsal skin and observed successful skin penetration. The FTA group showed higher level of plasma insulin in vivo than that of the DMN patch group. CONCLUSIONS: FTA system consisting of simple polymer film and micropillars showed enhanced DMN delivery than that of the existing DMN patch system. Because FTA works with simple finger force without sticky patch and external devices, FTA is a novel and promising platform to overcome the limitations of conventional microneedle patch delivery system; we suggest FTA as a next generation applicator for microneedle application in the future.

7.
Pharmaceutics ; 13(7)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371749

RESUMEN

Dissolving microneedles (DMNs) have been used as an alternative drug delivery system to deliver therapeutics across the skin barrier in a painless manner. In this study, we propose a novel heat-melting method for the fabrication of hydrophobic poly(lactic-co-glycolic acid) (PLGA) DMNs, without the use of potentially harmful organic solvents. The drug-loaded PLGA mixture, which consisted of a middle layer of the DMN, was optimized and successfully implanted into ex vivo porcine skin. Implanted HMP-DMNs separated from the patch within 10 min, enhancing user compliance, and the encapsulated molecules were released for nearly 4 weeks thereafter. In conclusion, the geometry of HMP-DMNs was successfully optimized for safe and effective transdermal sustained drug delivery without the use of organic solvents. This study provides a strategy for the innovative utilization of PLGA as a material for transdermal drug delivery systems.

8.
Micromachines (Basel) ; 12(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567577

RESUMEN

(1) Background: Dissolving microneedles (DMNs), a transdermal drug delivery system, have been developed to treat various diseases in a minimally invasive, painless manner. However, the currently available DMNs are based on burst release systems due to their hydrophilic backbone polymer. Although hydrophobic biodegradable polymers have been employed on DMNs for sustained release, dissolution in an organic solvent is required for fabrication of such DMNs. (2) Method: To overcome the aforementioned limitation, novel separable polycaprolactone (PCL) DMNs (SPCL-DMNs) were developed to implant a PCL-encapsulated drug into the skin. PCL is highly hydrophobic, degrades over a long time, and has a low melting point. Under thermal melting, PCL encapsulated capsaicin and could be fabricated into a DMN without the risk of toxicity from an organic solvent. (3) Results: Optimized SPCL-DMNs, containing PCL (height 498.3 ± 5.8 µm) encapsulating 86.66 ± 1.13 µg capsaicin with a 10% (w/v) polyvinyl alcohol and 20% (w/v) polyvinylpyrrolidone mixture as a base polymer, were generated. Assessment of the drug release profile revealed that this system could sustainably release capsaicin for 15 days from PCL being implanted in porcine skin. (4) Conclusion: The implantable SPCL-DMN developed here has the potential for future development of toxicity-free, sustained release DMNs.

9.
Pharmaceutics ; 12(6)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585966

RESUMEN

Dissolving microneedle (DMN) patches were developed as efficient and patient-friendly transdermal delivery systems for biopharmaceuticals. However, recent studies have confirmed that the efficiency of DMNs to deliver biopharmaceuticals is highly reduced because of incomplete insertion caused by the stiffness and elastic properties of the skin. Therefore, micropillar integrated DMNs were developed to overcome the insertion limitations of DMN patches. Although micropillars were designed as integrated applicators to implant DMNs across the skin, they can also become inserted into the skin, leading to skin injury and inflammation. Herein, we have developed a separable micropillar integrated DMN (SPDMN) capable of inserting DMNs across the skin with high efficiency while minimizing skin injury risk through the introduction of a safety ring feature. Unlike previously developed systems, the SPDMN does not require continuous skin attachment and can be detached immediately post-application, leaving DMNs implanted inside the skin. Altogether, the findings of this study lead to the development of a quick, safe, and efficient DMN-based drug delivery platform.

10.
Pharmaceutics ; 11(11)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652807

RESUMEN

Alopecia, characterized by hair follicle blockage and hair loss, disrupts the normal cycle of hair growth. Although not a life-threatening condition, a growing body of evidence suggests that the psychological state of individuals experiencing alopecia can be highly influenced. Despite considerable research on hair loss treatment, interest in micro-pigmentation has increased in recent decades. Micropigmentation is an effective method to camouflage the visual contrast between the scalp and hair strands. However, the localization, intensity and dimension of microdots depend highly upon the physician performing the implantation. Incorrectly localized microdots within the skin may lead to patchy or faded micropigmentation. To overcome the limitations of conventional micro-pigmentation, we aimed to develop micro-pigment-encapsulated biodegradable microneedles (PBMs), capable of accurately implanting pigments below the epithelial-dermal junction of the scalp in a minimally invasive manner. A tissue interlocking microneedle technique was utilized to fabricate double-layered PBMs over a biodegradable flexible sheet, which could be washed off post-implantation. We confirmed that the intensity, dimension and insertion depth of 1,000 µm-long PBMs was maintained on pig cadaver skin over time. This study suggested that the developed PBMs would serve as an attractive platform for scalp micro-pigmentation in the future.

11.
Sci Rep ; 9(1): 7886, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-31133711

RESUMEN

The interest in safe and efficient transdermal drug delivery systems has been increasing in recent decades. In light of that, polymeric dissolving microneedles (DMNs) were developed as an ideal platform capable of delivering micro- and macro-biomolecules across the skin in a minimally invasive manner. A vast majority of studies, however, suggest that the shape of DMNs, as well as the elastic properties of skin, affects the delivery efficiency of materials encapsulated within DMNs. Likewise, in dynamic tissues, DMNs would easily distend from the skin, leading to inefficient delivery of encapsulated agents. Thus, herein, to improve delivery efficiency of DMN encapsulated agents, a novel hyaluronic acid backbone-based tissue interlocking DMN (TI-DMN) is developed. TI-DMN is simple to fabricate and significantly improves the transdermal delivery efficiency of encapsulated materials compared with traditional DMNs. The enhanced tissue interlocking feature of TI-DMN is achieved through its sharp tip, wide body, and narrow neck geometry. This paper demonstrates that TI-DMN would serve as an attractive transdermal delivery platform to enhance penetration and delivery efficiency of a wide range of biomolecules into the body.


Asunto(s)
Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Agujas , Piel/metabolismo , Parche Transdérmico , Administración Cutánea , Animales , Liberación de Fármacos , Ácido Hialurónico/química , Masculino , Ratones , Modelos Animales , Permeabilidad , Polímeros/química
12.
J Cosmet Dermatol ; 18(3): 936-943, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30160014

RESUMEN

BACKGROUND: Dissolving microneedles (DMNs) have been used for skin restoration and wrinkle improvement. Although lipophilic compounds, for example, natural oils or ceramides, enrich the skin barrier, their delivery via DMNs is challenging because of DMN fabrication difficulties. OBJECTIVES: In the present study, we combined a topical formulation and a DMN patch to perform two-phase delivery comprising a lipophilic formulation and hydrophilic compound-loaded DMNs to improve skin barrier status and the efficacy of drug delivery. METHODS: Horse oil-spread and adenosine-loaded DMN arrays were developed in a single patch (HOS-Ad-DMN patch). In vitro analysis was conducted to confirm the successful delivery of the compositions. Clinical assessments were conducted on the lateral canthus of 20 women to compare the efficacy of HOS-Ad-DMN patches with that of adenosine-loaded DMN patches (Ad-DMN patches). RESULTS: Adenosine was delivered via the DMNs after skin penetration and horse oil was delivered successfully into the skin through the microchannels created by the Ad-DMNs. Compared with Ad-DMN patches, HOS-Ad-DMN patches significantly improved skin elasticity, hydration, dermal density, and wrinkles. No adverse events were observed. CONCLUSION: HOS-Ad-DMN patches are a safe and efficient system for skin restoration and wrinkle improvement.


Asunto(s)
Adenosina/administración & dosificación , Productos Biológicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Aceites/administración & dosificación , Envejecimiento de la Piel/efectos de los fármacos , Adenosina/efectos adversos , Adenosina/farmacocinética , Administración Cutánea , Adulto , Animales , Productos Biológicos/efectos adversos , Sistemas de Liberación de Medicamentos/instrumentación , Elasticidad , Caballos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Persona de Mediana Edad , Agujas , Aceites/efectos adversos , Piel/efectos de los fármacos , Piel/metabolismo , Distribución Tisular , Parche Transdérmico , Pérdida Insensible de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...